Advanced aqueous rechargeable lithium battery using nanoparticulate LiTi2(PO4)3/C as a superior anode

نویسندگان

  • Dan Sun
  • Yifan Jiang
  • Haiyan Wang
  • Yan Yao
  • Guoqing Xu
  • Kejian He
  • Suqin Liu
  • Yougen Tang
  • Younian Liu
  • Xiaobing Huang
چکیده

Poor cycling performance arising from the instability of anode is still a main challenge for aqueous rechargeable lithium batteries (ARLB). In the present work, a high performance LiTi2(PO4)3/C composite has been achieved by a novel and facile preparation method associated with an in-situ carbon coating approach. The LiTi2(PO4)3/C nanoparticles show high purity and the carbon layer is very uniform. When used as an anode material, the ARLB of LiTi2(PO4)3/C//LiMn2O4 delivered superior cycling stability with a capacity retention of 90% after 300 cycles at 30 mA g(-1) and 84% at 150 mA g(-1) over 1300 cycles. It also demonstrated excellent rate capability with reversible discharge capacities of 115 and 89 mAh g(-1) (based on the mass of anode) at 15 and 1500 mA g(-1), respectively. The superior electrochemical properties should be mainly ascribed to the high performance of LiTi2(PO4)3/C anode, benefiting from its nanostructure, high-quality carbon coating, appropriate crystal structure and excellent electrode surface stability as verified by Raman spectra, electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-lived Aqueous Rechargeable Lithium Batteries Using Mesoporous LiTi2(PO4)3@C Anode

The instability of anode materials during cycling has been greatly limiting the lifetime of aqueous rechargeable lithium batteries (ARLBs). Here, to tackle this issue, mesoporous LiTi2(PO4)3@C composites with a pore size of 4 nm and a large BET surface area of 165 m(2) g(-1) have been synthesized by a novel two-step approach. The ARLB with this type of LiTi2(PO4)3@C anode, commercial LiMn2O4 ca...

متن کامل

Preparation, characterization and stability of Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic with NASICON-type structure

A conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using differential scanning calorimetry (DSC), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and AC impedance techniqu...

متن کامل

Voltage increase of aqueous lithium-ion batteries by Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic

  In this research, a lithium ion conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FESEM). The XRD patterns exhib...

متن کامل

Aqueous Mg-Ion Battery Based on Polyimide Anode and Prussian Blue Cathode

The magnesium-metal battery, which consists of a cathode, a Mg-metal anode, and a nonaqueous electrolyte, is a safer and less expensive alternative to the popular Li-ion battery. However, the performance of Mg batteries is greatly limited by the low electrochemical oxidative stability of nonaqueous electrolytes, the slow Mg diffusion into the cathode, and the irreversibility of Mg striping and ...

متن کامل

An aqueous rechargeable lithium battery of high energy density based on coated Li metal and LiCoO2.

Using a coated Li metal as an anode and LiCoO2 as a cathode, an aqueous rechargeable battery is built up, whose average discharge voltage is 3.70 V. This high voltage stability is due to the "cross-over" effect of Li(+) ions, which is different from the traditional ways of increasing overpotentials. The total energy density can be 465 W h kg(-1).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015